

Home Search Collections Journals About Contact us My IOPscience

Magnetic properties of  $U_2$ RhGa<sub>8</sub> and  $U_2$ FeGa<sub>8</sub>

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2003 J. Phys.: Condens. Matter 15 S2015 (http://iopscience.iop.org/0953-8984/15/28/317)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.121 The article was downloaded on 19/05/2010 at 14:15

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 15 (2003) S2015-S2018

PII: S0953-8984(03)62841-9

# Magnetic properties of U<sub>2</sub>RhGa<sub>8</sub> and U<sub>2</sub>FeGa<sub>8</sub>

S Ikeda<sup>1,2</sup>, T Ōkubo<sup>1</sup>, Y Inada<sup>1</sup>, Y Tokiwa<sup>1,2</sup>, K Kaneko<sup>2</sup>, T D Matsuda<sup>2</sup>, E Yamamoto<sup>2</sup>, Y Haga<sup>2</sup> and Y Ōnuki<sup>1,2</sup>

<sup>1</sup> Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
<sup>2</sup> Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan

Received 12 November 2002 Published 4 July 2003 Online at stacks.iop.org/JPhysCM/15/S2015

### Abstract

We have grown single crystals of  $U_2$ FeGa<sub>8</sub> and  $U_2$ RhGa<sub>8</sub> with the tetragonal structure by the self-flux method. Both compounds are Pauli paramagnets and possess relatively large  $\gamma$ -values of 52 and 43 mJ K<sup>-2</sup>/mol U, respectively.

## 1. Introduction

Recently, quasi-two-dimensional rare-earth and uranium compounds have attracted much attention in relation to superconductivity [1]. CeCoIn<sub>5</sub> and CeIrIn<sub>5</sub> with the tetragonal structure are heavy-fermion superconductors with transition temperatures of 2.3 and 0.4 K, respectively. On the other hand, UTGa<sub>5</sub> (T: transition metal) also crystallizes in the same tetragonal structure, and uniaxially distorted layers of UGa<sub>3</sub> and TGa<sub>2</sub> are stacked sequentially along the [001] direction (*c*-axis), as shown in figure 1(c) [2]. These compounds exhibit a wide variety of physical properties including Pauli paramagnetism (UFeGa<sub>5</sub>) [3], semimetallicity (UCoGa<sub>5</sub> and URhGa<sub>5</sub>) [4], and antiferromagnetism (UNiGa<sub>5</sub> and UPtGa<sub>5</sub>) [5]. Itinerant magnetic characteristics of these compounds are inferred from their almost temperature-independent paramagnetic susceptibility, like that of the typical itinerant antiferromagnet UGa<sub>3</sub>.

 $U_2TGa_8$  has a structural similarity with UTGa<sub>5</sub>: the tetragonal structure consists of the stacked TGa<sub>2</sub> and 2UGa<sub>3</sub> layers, as shown in figure 1(b). Magnetic and thermal properties were previously investigated for a Pauli paramagnet,  $U_2RuGa_8$  [6]. We have tried to grow the other  $U_2TGa_8$  compounds, and succeeded in growing single crystals of  $U_2FeGa_8$  and  $U_2RhGa_8$ . Electrical, magnetic, and thermal properties of the two compounds are investigated.

### 2. Experimental details

Single crystals of  $U_2$ RhGa<sub>8</sub> and  $U_2$ FeGa<sub>8</sub> were grown by the so-called Ga-self-flux method. Starting materials of 99.97% pure U, 99.99% (4N) Rh or 4N Fe, and 5N Ga in the atomic ratio of 2:1:30 were put into an alumina crucible and sealed in a quartz tube with an Ar atmosphere, where pressure was adjusted to 1 atm at 1050 °C. The tetragonal Ho<sub>2</sub>CoGa<sub>8</sub> structure was



Figure 1. Crystal structures of (a) UGa<sub>3</sub>, (b) U<sub>2</sub>TGa<sub>8</sub>, and (c) UTGa<sub>5</sub>.



Figure 2. Temperature dependences of the electrical resistivities of  $U_2FeGa_8$  and  $U_2RhGa_8$ , together with those for UFeGa<sub>5</sub> and URhGa<sub>5</sub>.

confirmed by the x-ray powder diffraction method, and the crystal orientation was determined by the usual Laue method. The lattice parameters a and c were determined as 4.256 and 10.98 Å for U<sub>2</sub>FeGa<sub>8</sub>, and 4.297 and 11.08 Å for U<sub>2</sub>RhGa<sub>8</sub>, respectively.

The electrical resistivity measurement was carried out by the usual four-probe DC method. The magnetic susceptibility was measured by a commercial SQUID magnetometer. The specific heat measurement was done by the quasi-adiabatic heat-pulse method.

#### 3. Experimental results and analyses

First, we show in figure 2 the electrical resistivities  $\rho$  of U<sub>2</sub>FeGa<sub>8</sub> and U<sub>2</sub>RhGa<sub>8</sub> for the current *J* along [100], as well as those of UFeGa<sub>5</sub> and URhGa<sub>5</sub>, shown by solid curves. U<sub>2</sub>FeGa<sub>8</sub> and U<sub>2</sub>RhGa<sub>8</sub> possess large residual resistivities, which might be due to stacking faults of the crystal structure elongated along [001]. There is no indication of a phase transition down to 1.5 K.

Figure 3 shows the temperature dependence of the magnetic susceptibility for the magnetic field H along [001]. The almost temperature-independent susceptibility can be attributed to Pauli paramagnetic susceptibility, like that of UFeGa<sub>5</sub> and URhGa<sub>5</sub>, shown by thin curves.

Finally, figure 4 shows the  $T^2$ -dependence of the specific heat in the form of C/T. We can estimate the  $\gamma$ -value as 52 and 43 mJ K<sup>-2</sup>/mol U for U<sub>2</sub>FeGa<sub>8</sub> and U<sub>2</sub>RhGa<sub>8</sub>, respectively. These values are summarized in table 1.



**Figure 3.** Temperature dependences of the magnetic susceptibilities for the field along [001] in U<sub>2</sub>FeGa<sub>8</sub> and U<sub>2</sub>RhGa<sub>8</sub>, together with those for UFeGa<sub>5</sub> and URhGa<sub>5</sub>. (This figure is in colour only in the electronic version)



Figure 4. The  $T^2$ -dependence of the specific heat in the form of C/T, for U<sub>2</sub>RhGa<sub>8</sub> and U<sub>2</sub>FeGa<sub>8</sub>.

**Table 1.**  $\gamma$ -values for U<sub>2</sub>RhGa<sub>8</sub> and U<sub>2</sub>FeGa<sub>8</sub>.

|              | $\gamma \ (mJ \ K^{-2}/mol \ U)$ |                     |
|--------------|----------------------------------|---------------------|
| UFeGa5       | 40                               | Uncompensated metal |
| U2FeGa8      | 52                               | Compensated metal   |
| URhGa5       | 5                                | Semimetal           |
| $U_2 RhGa_8$ | 43                               | Uncompensated metal |

From the number of valence electrons,  $U_2FeGa_8$  is a compensated metal with an equal volume of electron and hole Fermi surfaces, while  $U_2RhGa_8$  is an uncompensated metal. As for UFeGa<sub>5</sub> and URhGa<sub>5</sub>, we have confirmed by dHvA experiment that UFeGa<sub>5</sub> is an uncompensated metal with a relatively large corrugated cylindrical Fermi surface and a lattice-like one [3], while URhGa<sub>5</sub> is a semimetal with small closed Fermi surfaces, resulting in a small  $\gamma$ -value of 5.5 mJ K<sup>-2</sup> mol<sup>-1</sup> [4]. The large  $\gamma$ -value suggests that  $U_2FeGa_8$  has large electron and hole Fermi surfaces in contrast with the semimetallic URhGa<sub>5</sub>.

In conclusion, we succeeded in growing single crystals of the Pauli paramagnets  $U_2$ FeGa<sub>8</sub> and  $U_2$ RhGa<sub>8</sub> with  $\gamma$ -values of 52 and 43 mJ K<sup>-2</sup>/mol U, respectively.

#### Acknowledgment

This work was financially supported by a Grant-in-Aid for Scientific Research COE(10CE2004) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

# References

- Thompson J D, Movshovich R, Fisk Z, Bouquet F, Curro N J, Fisher R A, Hammel P C, Hegger H, Hundley M F, Jaime M, Pagliuso P G, Petrovic C, Phillips N E and Sarrao J L 2001 J. Magn. Mater. 226–230 5
- [2] Grin Yu N, Pogl P and Hiebl K 1986 J. Less-Common Met. 121 497
- [3] Tokiwa Y, Maehira T, Ikeda S, Haga Y, Yamamoto E, Nakamura A, Ōnuki Y, Higuchi M and Hasegawa A 2001 J. Phys. Soc. Japan 70 2982
- [4] Ikeda S, Tokiwa Y, Okubo T, Haga Y, Yamamoto E, Inada Y, Settai R and Ōnuki Y 2002 J. Nucl. Sci. Technol. (Suppl.) 3 206
- [5] Tokiwa Y, Haga Y, Metoki N, Ishii Y and Ōnuki Y 2002 J. Phys. Soc. Japan 71 725
- [6] Schönert M, Corsépius S, Scheidt E-W and Stewart G R 1995 J. Alloys Compounds 224 108